RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases
نویسندگان
چکیده
We observed that cells lacking Rep and UvrD, two replication accessory helicases, and the recombination protein RecF are cryo-sensitive on rich medium. We isolated five mutations that suppress this Luria-Bertani (LB)-cryo-sensitivity and show that they map in the genes encoding the RNA polymerase subunits RpoB and RpoC. These rpoB (D444G, H447R and N518D) and rpoC mutants (H113R and P451L) were characterized. rpoB(H447R) and rpoB(D444G) prevent activation of the Prrn core promoter in rich medium, but only rpoB(H447R) also suppresses the auxotrophy of a relA spoT mutant (stringent-like phenotype). rpoC(H113R) suppresses the thermo-sensitivity of a greA greB mutant, suggesting that it destabilizes stalled elongation complexes. All mutations but rpoC(P451L) prevent R-loop formation. We propose that these rpo mutations allow replication in the absence of Rep and UvrD by destabilizing RNA Pol upon replication-transcription collisions. In a RecF(+) context, they improve growth of rep uvrD cells only if DinG is present, supporting the hypothesis that Rep, UvrD and DinG facilitate progression of the replication fork across transcribed sequences. They rescue rep uvrD dinG recF cells, indicating that in a recF mutant replication forks arrested by unstable transcription complexes can restart without any of the three known replication accessory helicases Rep, UvrD and DinG.
منابع مشابه
UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli.
The roles of UvrD and Rep DNA helicases of Escherichia coli are not yet fully understood. In particular, the reason for rep uvrD double mutant lethality remains obscure. We reported earlier that mutations in recF, recO or recR genes suppress the lethality of uvrD rep, and proposed that an essential activity common to UvrD and Rep is either to participate in the removal of toxic recombination in...
متن کاملThe Conserved C-Terminus of the PcrA/UvrD Helicase Interacts Directly with RNA Polymerase
UvrD-like helicases play diverse roles in DNA replication, repair and recombination pathways. An emerging body of evidence suggests that their different cellular functions are directed by interactions with partner proteins that target unwinding activity to appropriate substrates. Recent studies in E. coli have shown that UvrD can act as an accessory replicative helicase that resolves conflicts ...
متن کاملThe Balance between Recombination Enzymes and Accessory Replicative Helicases in Facilitating Genome Duplication
Accessory replicative helicases aid the primary replicative helicase in duplicating protein-bound DNA, especially transcribed DNA. Recombination enzymes also aid genome duplication by facilitating the repair of DNA lesions via strand exchange and also processing of blocked fork DNA to generate structures onto which the replisome can be reloaded. There is significant interplay between accessory ...
متن کاملUvrD helicase
In classical bacterial nucleotide excision repair (NER), a bulky DNA lesion such as a UV photoproduct is recognized by the UvrAB DNA damage recognition complex, and the strand containing the adduct is incised by UvrC nuclease upstream and downstream of the lesion. UvrD helicase subsequently loads at a nicked DNA site and unwinds the 12-base pair duplex containing the lesion, thereby creating a ...
متن کاملThe helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo
How living cells deal with head-on collisions of the replication and transcription complexes has been debated for a long time. Even in the widely studied model bacteria Escherichia coli, the enzymes that take care of such collisions are still unknown. We report here that in vivo, the DinG, Rep and UvrD helicases are essential for efficient replication across highly transcribed regions. We show ...
متن کامل